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Numerical solutions are obtained for viscous incompressible flow over an impul- 
sively started cylinder and a 2:l ellipse at an angle of attack of 20”. The Navier-Stokes 
equations with vorticity and stream function as variables are solved using a combination 
of finite differences and Green’s function. The Reynolds numbers are 500 and 2OO 
for the cylinder and ellipse respectively, and computations are continued up to a dimen- 
sionless time of 1.5. For the flow over an ellipse the lift force as well as the drag are 
initially very large and then rapidly decay. The rear stagnation point gradually moves 
down and separation occurs at t - 1.1. Recent experimental studies by Taneda for 
flow at the same geometry indeed show large values of lift following the initial motion 
and gradual downward movement of the rear stagnation point. 

1. INTRODUCTION 

In the present work we seek a solution to the flow past an impulsively started 
circular cylinder and an ellipse at an angle of attack. A computation scheme using 
Green’s functions is formulated and used. This relaxes the need to specify faraway 
boundary conditions and reduces the field of computation. In this methodPoisson’s 
stream function equation is solved by integral relations in a manner similar to that 
used by Thompson, Shanks, and Wu [l], who solved the time dependent flow over 
a rectangular slab at an angle of attack. 

Following the impulsive start, the fluid in contact with the body is at rest whereas 
the adjacent layers slip past the surface. The vorticity generated at the surface is 
first diffused and later it is simultaneously diffused and convected. Hence, a 
boundary layer grows on the surface, the rate of growth is initially very large, and 
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FLOW PAST IMPULSIVELY STARTED BODIES 47 

it diminishes with time. In the region of adverse pressure gradient, the forward 
stream eventually separates from the surface; and as time increases, the point of 
separation moves upstream resulting in a distinct separated region. 

Analytical solutions to such impulsively started flows often resort to perturba- 
tion schemes. For a circular cylinder Blasius [2], Goldstein and Rosenhead [3], and 
Watson [4] obtained analytical solutions as an expansion in time assuming the 
pressure distribution to be that of the steady potential flow over the original body. 
They predict correctly the onset of separation and the viscous drag even for 
moderate Reynolds numbers. However, their argument that the pressure drag is 
zero would be correct only in the limit as Reynolds number goes to infinity for 
t # 0. Proudman and Johnson [5] solved the unsteady Navier-Stokes equation in 
the neighborhood of the rear stagnation point of an impulsively started circular 
cylinder. The analysis starts with the solution of Blasius [2] and results that are 
valid for attached wakes are obtained. They predict that the wake length grows 
exponentially with time and is proportional to R;1’2. Wang [6,7] used an inner- 
outer expansion to solve the unsteady incompressible Navier-Stokes equations for 
the flow past an impulsively started circular cylinder. He obtained a pressure drag 
that is proportional to t-lj2. Collins and Dennis [S] extended Wang’s approxima- 
tion to larger time and lower Reynolds numbers. In a second paper Collins and 
Dennis [9] utilize an expansion in sin n0 for the vorticity and stream function. 
They use the unsteady boundary layer transformation to obtain solutions at small 
time and later switch to the original variables. 

Perhaps the earliest numerical solution of unsteady incompressible Navier- 
Stokes equations for the flow past an impulsively started circular cylinder is that 
of Payne [lo]. He uses an explicit time difference formula for the vorticity equation, 
and velocities are calculated directly from vorticity. Drag is calculated by the rate 
of decrease of momentum of the fluid. The unsteady flow over a cylinder was also 
solved numerically by Son and Hanratty [Ill, Kawaguti and Jain [12], Thoman 
and Szewczyk [13], and Jain and Rao [14]. 

Howarth [15] discusses the development of circulation around a thin elliptic 
cylinder and predicts that no lift occurs up to the time of separation. Wang [16], 
on the other hand, finds that the lift continuously increases from an initial value 
of zero. Dennis and Staniforth [17] considered the flow past an impulsively started 
body at an angle of attack using boundary layer equations and a spatial trans- 
formation that stretches time. They solved the flow past a cylinder for various 
Reynolds numbers as a test problem. 

Numerical solutions of laminar flow past elliptic cylinders at various angles of 
attack were obtained by Lugt and Haussling [18] for Reynolds numbers of 10 to 
200 and angles of attack of 45” and 90”. Mehta and Lavan [19] have solved 
numerically the problem of an impulsively started symmetric 9 oh thick airfoil at an 
angle of attack of 15” and Reynolds number of 1000. In the last two studies the 
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initial lift is very high. Telionis and Tsahalis [20] studied separation over impul- 
sively started circular and elliptical cylinders using boundary layer equations. 

An experimental study of the flow over a circular cylinder started impulsively 
from rest was carried out by Schwabe [21] for Reynolds number of 560. Honji and 
Taneda [22] studied the development of symmetrical unsteady vortices behind 
impulsively started circular cylinders for Reynolds numbers ranging from 31 to 
1700. Recently Taneda [23] studied experimentally the flow over a 2 : 1 ellipse 
following an impulsively started motion. He reports very high initial lift values and 
a gradual downward movement of the rear stagnation point. 

2. MATHEMATICAL FORMULATION 

The study deals with incompressible viscous laminar flow over a circular cylinder 
and an ellipse at an angle of attack. The mathematical development, however, is 
general to permit all two-dimensional bodies that can be generated by a Joukowski 
transformation. The governing equations are the vorticity transport and stream 
function equations. In Cartesian coordinates 5, 7 (see Fig. 1) the nondimensional 
equations are 

&J/w + 4wat) + 4ww = we>Ka24a~2) + (~24+2n (1) 
(a?P/ap) + (a?P/aq) = -w, (2) 

where 
u = aFlaT, v = -aFlag. (3) 

The reference velocity used is U, , and the reference length is the mean of the semi- 
major, a, and minor, b, axes of the ellipse, i.e. (a + b)/2. Hence the nondimensional 
chord length and time are I = 2a/[(a + b)/2], and t = tU,/[(a + b)/2] (where t is 
dimensional time). The Reynolds number is given by R, = 2aU,/v. 

The uniform flow U, makes an angle, (1, with the direction of the chord, 5. In 
order to avoid large numerical values of the stream function at large distances the 
uniform flow is subtracted out. The resulting difference stream function, 9, is 
defined by 

$=!I-7cosA +[sinfl (4) 

and Eqs. (l), (2) become 

g+(~+cosn)g+(- at 3YL. + sin d) 5 

I ab 3~ -- = R, ap + aq ( 1 ’ 

pm3 + (a2ww = - 

(5) 

(6) 
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,Q=O,l 

FIG. 1. Schematic of grid over a 2:l ellipse at 20” angle of attack. 

The ellipse is obtained from a circle hereafter called the circle plane through a 
Joukowski transformation 

5 = 2 + (C/Z), (7) 

where Z = X + iY and 5 = 5 + iv. Since the transformation is conformal the 
Cauchy-Riemann equations give 

ax/at = aria7 = A, -ax/al, = arlaf = B, (8) 

and Eqs. (5,6) become in the circle plane 

$- + (A cos A - B sin A) -f& + (B cos II + A sin A) -& 

a+ au a* au 
+(A’+B3(~~--- ax ay 1 

ah 
= (A2 + B2) & ($ + --) ay2 3 

(ay/axy + (a*+/ary = -co/(LP + By. 

(9) 

(10) 
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At the Reynolds numbers that we will consider we expect large gradients of vor- 
ticity close to the surface. Equations (9), (10) are therefore transformed into the 
working plane, w, using 

w = 01 + i/3 = (1/2~) In(X + iY) (11) 
in order to stretch the normal coordinate near the surface. The Cauchy-Riemann 
equations are 

c = h/ax = agjar, D = -aollay = aplax, (12) 

and the final equations are 

au 
at + (AC cos A - BC sin (I - BD cos (1 - AD sin ~.l) s 

+ (AD cos (1 - BD sin A + BC cos (1 + AC sin L’I) -?$ 

a* aw 
+(AP+Bz)(C2+Dz)(~~--- acll ag 1 

= f (A2 + B2)(C2 + D2) ($$ + +) 
e 

and 
(ay/a2) + (a2#/ap) + O/[(~2 + B”)(c~ + D”)] = 0. (14) 

Initially (following the impulsive start) the vorticity is zero everywhere and the 
stream function is given by the potential flow solution. (See for example Milne- 
Thompson [24].) Hence at t = 0, 

+ = Cc - 1) siNW3 cos A + (c + 1) cos(2+) sin rl 
e2na (15) 

On the surface of the body the no-slip condition holds at all times, i.e. 

Y = aY/aQ1 = 0 (16) 

At the outer boundary the vorticity is zero. The need for an outer boundary 
condition on stream function depends on the solution method: When Eq. (14) is 
solved by relaxation, an outer boundary condition on $ must be given. When the 
Green function formulation is used no condition on # is required. Since the Green 
function for Poisson’s equation is known for the interior of a circle, we transform 
Eq. (10) to the interior of a circle through 

52 = l/Z = peie = r + ia (17) 
and obtain 

v2+ = --wU/p4) + c2 - (2c/pZ) cos 26q = -f(p, e), (18) 
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where f is a known function at the interior points of the unit circle, p = 1. The 
boundary condition on the surface is !P = 0 or 

tJ = -(c - 1) sin 0 cos d + (c + 1) cos 0 sin (1 = g(0). (19) 

The solution of Eq. (18) can be split as 

$ = A + $2 9 (20) 
where #, is a solution to 

vy, = 0 (21) 

(see Eq. (15)) with +I on the boundary being g(8). A closed form solution for & is 
obtained from 

(22) 

given by Kantarovich and Krylov [25]. In this equation fl is the complex conjugate 
of D and each point value of &.(J?) is obtained by integration over the entire area. 
Note that &. is zero on the surface. 

3. NUMERICAL METHOD 

The vorticity Eq. (13) is solved in the w plane taking equal increments in ar and 
/I @Ior # d/3). The number of points in the /3 direction was always 80. However, as 
time progresses and vorticity spreads, additional entire ~11 lines (not points) are 
added in the integration. (At t = 1.5, 62 OL lines were used.) The time increment 
was first lo-* and was increased to 1O-2 at t = 1.5. 

The vorticity equation is numerically advanced in time using a forward explicit 
marching method. Next the stream function equation is solved in the entire field, 
(as will be explained later). The value of vorticity at the surface for the new time is 
obtained using Woods’ [26] three-point method. 

[ 
W2 5 2 

w1.3 = - L + A:& W* IA HI,~ Aa + 1679(1 - ce)], (23) 

where 
HI,, = 1/{49[1 - 2c cos&$) + c”]}. 

Here, i and j are defined by 01= (i - 1) Aa and /3 = (j - 1) A/3. Hence, i = 1 
denotes the surface and 2 denotes the grid point next to the surface. 

The method for computing vorticity is well known and no further details will be 
given here. (See for example Refs. [12, 131.) A detailed description of the way $ is 
calculated is given next. 
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We expand In 1 Q - Q 1 , in an appropriate power series. For values of Q 
between zero and fi we use 

In ] j5ei4 - peis I = In j? - %zI t f cos n(e - 8). (24) 

For values of Q between a and 1 we take 

In 1 $eie - peie 1 = In p - mzI t $ cos n(4 - 0). 

Hence the series solution for & is obtained in the form 

0) 1 fp dp de 

co l/5” 
In p + nzl n ;5;; cos n@ - 0) 1 fp dp de 

e) 1 fp dp do (26) 

or 
242 = I1 + 1, + 13 - (27) 

Since o is a periodic function of 8, Green’s function is obtained as a trigono- 
metric series, i.e., w at fixed p is expanded in a Fourier series that can be integrated 
over the variable 0 making use of the orthogonal properties. We obtain 

I1 = T [r,” - In $ [(e2 + -$) a, - f ~2~1 p dp 

+ cos B fi 
-7-O I [( 

1 
c2_tF ati- ) $ P& + a3)] P dp 

cos 2Ll fi 
+ 2$2 - s, [ (c2 + -$) a2pa - -+- p2ho + d] P dp 

cos 3tJ p 
+ 383 - s, [(c’ + f) w3 - + p3(a, + %I] P dp 

+------------------------------ 

sin B 6 
+ B - s, [(c’ + jr) blp - $ A--b, + &I] P dp 

sin 20 6 
+ 262 o s [( c2 + $) b,p* - $ p2@ + bJ] P dp 

sin 3fJ 6 
+ 389 0 s [( 

c2+-$ bG3-+p 1 ‘(b, + &I] P dp + -]. (28) 



FLOW PAST IMPULSIVELY STARTED BODIES 53 

I2 = T [lb1 [--ln p [(c2 + $) a0 - $ a2] p dp 

+ ,Z cos I!? s’ [( 
B 

c2+f ----g ) “b ; (” ‘d ““‘1 p dp 

+ /5” cos 24 l 
I [( 

1 c2+--$ +-, 1 
c (a0 + 4 -- 

2 P P P P2 1 P dP 

j3” cos 3d 1 
+ 3 I II( 

9 1 1 a3 c (4 + 4) 
P ) P4 P3 P2 P3 1 P dP 

+---- -_---------------------- 

+ p” sin 4 6 [ (~2 + -$) -$- - $ (-blp+ ‘“‘1 p dp 

p”” sin 2d l 
+ 2 I [( 

c2 I 1 b, c (0 + b4) 
b 1 P4 P2 P2 P2 1 P dp 

1s = r [co, 03 lo1 [(c2 + +) us - $ (~1 + 4 P] p dp 

cos 28jP 1 
+ 2 ~ s, [ (c2 + +) a2p2 - +- @JO + d pa] P dp 

+ cos 3663 1 

I [( 3 0 
c2 + -+ 

) 
&p8 - $ (~1 + ~5) P’] P dp 

+----------------------------- 

+ sin @ lo1 [ ( c2 + -$) b-+(--bl+W]pdp 

sin 2@2 l 
+--T- s [( b,p 

0 
c2 + f 1 - $ (0 + b4) P’] P dp 

+ sin 3&P l 
s [( 3 0 

c2 + -+) b,p - $ (b, + hi) P’] P dp 

+-----------------------------I. 

(2% 

(30) 



54 PANIKKER AND LAVAN 

Since the values of the Fourier coefficients (the a’s and b’s) are known functions 
of 01 we replace p by (y. using p = e- 2na. The integration is then carried out to an 
accuracy of (~Ior)~, yielding & . Equation (15) gives the solution to $I and # = 
& + & as stated earlier. 

For the purpose of comparison, a solution for the flow over an ellipse was 
obtained also by direct point-successive over-relaxation. The flow over an im- 
pulsively started cylinder is computed using Green’s function only since com- 
parison can be made with solutions of others. 

After the velocity and vorticity fields are computed the pressure on the surface 
is calculated from 

(31) 

where PO is an arbitrarily assigned value at the trailing edge. We do not enforce the 
condition that Jt (L%JJ/&.) d/l = 0. Therefore, the numerically computed values of 
pressure using Eq. (31) need not be single valued. We judge the quality of the 
calculated pressure field by the proximity of J-t (a~/&) d/l to zero. See further 
discussion in Section 4. 

The force coefficients in 5 and 7 directions are obtained by contour integration 
on the surface. 

CPC = j (f’ ddl), 

G = 2 f (w, &lR,), 

G, = 2 f (us 4/R,), 

(32) 

(33) 

(34) 

(35) 

where the first subscript denotes contribution due to pressure or shear and the 
second subscript indicates the direction of the force. 

The coefficients of lift and drag are, therefore, 

CD, = C,, sin A + C,, cos A, (36) 

CD, = C,, cos A - C,, sin A, (37) 

CL, = C,,, cos A - C,, sin A, (38) 

CL, = C,, sin A + Cs,, cos A. (39) 

The last term, (shear contribution to hft), for A =20” is negligible. 
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4. DISCUSSION OF RESULTS 

A. Flow over a Cylinder 

A solution was obtained for flow over an impulsively started circular cylinder 
at a Reynolds number of 500. The Green function method only was used and 
calculations were carried out up to t = 1.5. The computed surface vorticities, wg , 
at t = 0.3 and 1.0 are shown in Figs. 2 and 3, where they are compared with those 
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FIG. 2. Surface vorticity on a circular cylinder at t = 0.3. 
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FIG. 3. Surface vorticity on a circular cylinder at t = 1.0. 
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of Dennis and Staniforth 1171, Wang [6], and Son and Hanratty [ll]. The surface 
vorticity obtained from Wang’s solution in our variables is 

co, = 
2112 sin q5(R,)l12 

(77t)1/2 
1 + = + 2t cos c#l (1 + $)I. 

(2R,)lj2 (40) 

Figure 2 shows that the agreement between the four studies is good at t = 0.3 
where the flow did not yet separate. 

Figure 3 shows that at t = 1.0 the surface vorticities of the four solutions do not 
retain the close agreement. Wang’s solution exhibits the largest discrepancy, 
probably since his time expansion is already relatively inaccurate at this time when 
separation is present. 

Separation starts at t, = 0.37 according to our calculations. Dennis and 
Staniforth [17] and Collins and Dennis [9] give t, = 0.39; Thomas and Szewczyk 
[13] state that t, - 0.35; Collins and Dennis [S] report t, - 0.41; while Wang [6] 
finds 0.35. The classical analytical boundary layer solution of Blasius [2] gives the 

I / I I I I I 

0 
2.1 - 

0 - PRESENT RESULTS 

0 -.-.- THCMAN 8 SZEWCZYK II31 
1.9 - o o o o TELIONIS ET AL. [201 - 

0 --- COLLINS ET ALC91 

1.7- o 
0 

,-SON AND HANRATTY [II I 

1.5 - 

- 1.3- 

I 
F I.I- 

0.9 - 

0.7 - 

0.5 - 

I I I I I I 1 
100 II0 120 130 140 Is0 160 170 I80 

ANGLE FROM LEACiNG EDGE , 8 

FIG. 4. Position of the point of vanishing shear, 0, on a circular cylinder versus time. 
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separation time for the limiting case of R, + co as t, = 0.35. The second approxi- 
mation of Goldstein and Rosenhead [3] gives t, = 0.3195. Collins and Dennis [8] 
show that t, remains 0.322 when higher approximations (up to seventh) are con- 
sidered. While it is expected that for finite R, , t, should increase, it is not clear yet 
exactly how t, varies with R, . 

Figure 4 shows the location of the point of vanishing shear, 8, , on a circular 
cylinder as a function of time. Our computed values of es are very close to those of 
Collins and Dennis [9] and are in agreement with Son and Hanratty [l l] at t = 1.5. 
(We were unable to compare at smaller t.) The results of Thoman and Szewczyk [ 131 
show a slower movement of 8, for R, = 600. (For R, = 500 the movement would 
be even slower.) We also show in Figure 4 boundary layer calculations of Telionis 
and Tsahalis [20], which show an asymptotic solution for R, -+ co. Clearly no 
comparison of flow with R, = 500 should be made with this solution. 

Figure 5 shows our computed wake length as a function of time and the experi- 
mental values obtained by Honji and Taneda [22]. Although the two time domains 
do not overlap the sets of results clearly show the same trend. 

TIME, t 

FIG. 5. Time variation of drag coefficients. 

Figure 6 shows the variation of the drag coefficients with time. The skin friction 
drag, C,s , decreases monotonically. The initial large value is due to the discon- 
tinuity of vorticity on the surface following the impulsive start. The theoretical 
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FIG. 6. Length of recirculating region behind a circular cylinder as function of time. 

analyses of Blasius [2] and Goldstein and Rosenhead [3] give the friction drag 
coefficient as 

c,, = 2(27r)‘l”/(RJ)1/2. (41) 

This is the same expression obtained by Wang [7] and Payne [lo]. Figure 6 shows 
that the agreement between our computed values and the analytical results for Cns 
is good. The behavior of CD, is much more complex. Figure 6 shows that it also is 
initially very large. It reaches a minimum of 0.1325 at approximately t = 0.8 and 
it then increases. The initial large values of C nP are due to the unsteady nature of 
the flow. The subsequent increase in C pP is due to the development of the separa- 
tion region. Schwabe’s [21] result is also shown in this figure. He obtained CD, 
from experimental observations of the flow pattern at a Reynolds number of 560. 
His value of 0.4 at t = 1.6 agrees fairly well with our value of 0.338 at t = 1.5. 

Goldstein and Rosenhead [3] argue that the pressure drag is zero since the 
variation of pressure across the thin boundary layer can be neglected, and the outer 
flow is the steady potential flow field. This is valid only in the limit of R, + co. 
For finite R, , the value of M/an (while small compared to the other terms in 
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the momentum equation) must be considered when calculating Co, . Payne [lo] 
calculated the value of pressure drag for small time by evaluating the rate of 
change of momentum in the direction of flow, x. He used the expression given by 
Phillips [27], 

d 
DP = - z A PWY dA, 

s 

and the vorticity solution of Blasius [2] and obtained values of C,, that tend to 
infinity as 1--+ 0, i.e., Co, = 2(27r)1’2/(IZet)1/2. Wang [7] obtained the same expres- 
sion for Cn, . These analytical results predict that Co, decreases continuously with 
time. The agreement with our computed results is good only until t N 0.4 where 
separation starts. 

The large initial values of CD, for flow over a cylinder were noted earlier in a 
number of numerical studies. Jain and Rao [14] report values of CD, for Reynolds 
numbers ranging from 40 to 200 and for R, = 1000. Kawaguti and Jain [12] give 

THOMAN et al. [I33 
(Ft.= 200) 

-.-.- COLLINS etal. [8] 

----- WANG [7] 

____ PRESENT RESULTS 

08- 

0” 

0.7 - 
THOMAN et al. [I31 
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06- 

\ 
\ 

05- ‘\ 
\ 

\ 
\ 

I I I I I 
025 050 0.75 I.0 1.25 1.50 

t 

FIG. 7. Variation of CD with time. 
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values for C,, for 10 < R, < 50. The numerical studies of flow at Reynolds 
numbers comparable to ours [8, 9, 11, 13, 171 do not explicitly report C,, although 
they were calculated in arriving at Cn . 

Figure 7 shows the variation of the total drag Cn as a function of time. The 
reported values of Cn for t < 1.5 are very scarce. Our results agree in trend with 
those of Wang [7] and Collins and Dennis [8] for t < 0.4. The values of Thoman 
and Szewczyk [13] for minimum Cn at R, = 200 and 600 (shown in Fig. 7) are 
quite different from our results. 

B. Flow over an Ellipse 

The impulsively started flow over a 2 : 1 ellipse at an angle of attack of 20” and 
Reynolds number of 200 (based on the major axis) was computed. Results were 
obtained using both the Green function method and successive over-relaxation 
using the same grid. The flow field is almost identical in both cases. Nevertheless, 
the resultant pressure fields were considerably different when these two flow fields 
were used. 

The pressure on the surface of the ellipse is obtained from Eq. (31) with the 
value of zero assigned to the trailing edge. The quality of the pressure calculations 
is judged by the closure of the pressure value; i.e., by the proximity of P, to zero, 
where 

p, = vYo> - fTwl/~~ra, (43) 

and W’)max is the maximum pressure difference on the entire surface. 

TABLE I 

Comparison of P, by the Two Methods 

Time Green’s function Overrelaxation 

0.5 0.0493 0.2023 

1.0 0.0300 0.1742 

1.5 0.0652 0.2533 

It can be seen from Table I that the accuracy of the pressure results when the 
Green function method is used is considerably better. It would, of course, be 
preferred if the periodicity of pressure could be enforced in the numerical formula- 
ti0ll.l 

Initially the rear stagnation point is at 5 = 1.25 and n = 0.22 (see point I in 
Fig. 8). As time progresses, the rear stagnation point moves toward the trailing 

1 The question of pressure periodicity was raised by one of the reviewers. 
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FIG. 8. Stream function contours for flow over an ellipse at t = 1.5. 

5 
SO .I .2 .3 .4 

TIME, t 

FIG. 9. Position of the point of vanishing shear on the ellipse versus time. 

edge as shown in Fig. 9. The front stagnation point is nearly stationary during 
this period. Separation starts at t = 1.2, at [ = 1.014, and at 7 = 0.433. Note that 
this point is on the upper side of the ellipse. A small separated region, S, can be 
seen in this figure [8]. 

Goldstein and Rosenhead [3] calculated the separation over a 6 : 1 ellipse at 7” 
angle of attack using boundary layer theory. They find that separation starts at a 
very small time and that it first occurs below the rear stagnation point. Telionis 
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and Tsahalis [20] obtain essentially the same results as Goldstein and Rosenhead. 
It should be pointed out that in these two studies the rear stagnation point is 
constrained by the outer potential flow to remain at the location prescribed by 
potential flow without circulation. This unrealistic constraint results in very large 
adverse pressure gradients below the rear stagnation point, hence, early separation 
there. 

Figure 8 shows streamlined contours at t = 1.5 computed by the Green function 
method. At this time the rear stagnation point is at 6 = 1.300 and 17 = -0.15. 

The coefficients of lift and drag are shown in Fig. 10. Initially, both lift and drag 
are very large, tending to infinity as t -+ 0. The large values of CDs are due to the 
large surface vorticity (same as for cylinder). The large initial values of CD, and CL, 
are consistent with the expressions of Phillips [27], 

Ft = - $j/qdA, 

Fn = $ s, pa< dA. 

It should be emphasized that the initial large values of lift are due to the unsteadi- 
ness following the impulsive motion and are not due to circulation. Howarth [15], 
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FIG. 10. Time variation of coefficients of lift and drag (21 e&We at L’I = 20”). 
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speculating that circulation would be zero until separation starts, predicted that 
following an impulsive start the lift would be zero for some period and would then 
gradually increase. 

Taneda [23] kindly agreed to carry out an experimental investigation of the 
ellipse problem that we computed; i.e., the initial motion over a 2 : 1 ellipse at an 
angle of attack of 20” (his Reynolds number is 3500). He reports large values of lift 
following an initial motion which is a reasonable approximation to an impulsive 
start. Taneda’s experiments also show the gradual downward movement of the 
rear stagnation point. 

A comparison of computation time for the two methods used can be misleading 
since in the Green function method computation time is independent of dt while 
in the overrelaxation method it increases with increasing dt and with decreasing 
residue requirements (i.e., the difference of the function at two successive iterations 
divided by the latest value). As an example for the flow past an ellipse, the over- 
relaxation method with a maximum residue of 1O-4 took 20 minutes to compute the 
flow from t = 1.0 to 1.5 using 50 time steps. The corresponding computation time 
with Green’s function was 28 minutes. The computations were carried out on a 
Univac 1108. 

5. CONCLUSION 

A numerical computation method using Green’s function was developed and 
successfully carried out. The main advantages of this method are: (i) No outer 
boundary conditions are required, (ii) the field of computation is reduced, (iii) the 
computation time of the stream function equation does not depend on dt, and 
(iv) the surface pressure distribution appears more accurate (single valued) than 
that obtained from the second-order successive overrelaxation method. 

The computations concentrated on the flow field following an impulsively 
started motion. Initially both skin friction and pressure drag are very large for both 
the circular cylinder and the ellipse. In the case of the ellipse the initial lift is also 
very large. Circulation is initially zero and it gradually increases as the rear stagna- 
tion point moves down the ellipse. Separation starts at a relatively large time on 
the upper part of the ellipse. The computed results qualitatively agree with recent 
experiments of Taneda. 
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